References

[1] Joo HS, Otto M. Molecular basis of in-vivo biofilm formation by bacterial Chemistry & Biology. 2012;19(12):1503-1513.

[2] Wolcott, R., Rhoads, D., Bennett, M., Wolcott, B., Gogokhia, L., Costerton, J. & Dowd, S. (2010). Chronic wounds and the medical biofilm paradigm. Journal of Wound Care, 19(2), p45-50.

[3] Carroll, K., Hobden, J., Miller, S., Morse, S., Mietzner, T., Detrick, B., Mitchell, T., McKerrow, J., Sakanari, J. (2016).  Jawetz, Melnick, & Adelbergs Medical Microbiology. 27th ed. McGraw-Hill: Shenzen, China.

[4] Munita, J & Arias, C. (2016). Mechanisms of antibiotic resistance. Microbiological Spectrum, 4(2). Retrieved from, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888801/.

[5] Petrova, O. S. Sticky situations: key components that control bacterial surface attachment. Journal of Bacteriology 2012, 194(10) May, 2413-2425.

[6] Percival, S., Malone, M., Mayer, D., Salisbury, A. & Schultx, G. (2018). Role of anaerobes in polymicrobial communities and biofilms complicating diabetic foot ulcers. International Wound Journal, p1-7. Retrieved from, https://doi.org/10.1111/iwj.12926.

[7] Sonderholm, M., Kragh, K., Koren, K., Jakobsen, T., Darch, S., Alhede, M., Jensen, P., Whiteley, M., Kuhl, M. & Bjarnsholt, T. (2017). Pseudomonas Aeruginosa aggregate formation in an alginate bead model system exhibits in vivo-like characteristics. Applied and Environmental Microbiology, 83(9), p1-15

[8] Hall-Stoodley L, Stoodley P. Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol. 2005; 13(1): 7–10.

[9] Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11(7):1034-43.

[10] James GA, Swogger E, Wolcott R, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16(1):37–44.

[11]  Epstein, A., Hong, D., Kim, P. & Aizenberg, J. (2013). Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces. New Journal of Physics, 15. Retrieved from, http://iopscience.iop.org/article/10.1088/1367-2630/15/9/095018.

[12] Wolcott R, & Dowd, S. The Role of Biofilms: Are We Hitting the Right Target? Plast Reconstr Surg. 2011 Jan;127 Suppl 1:28S-35S.

[13] Davies, D., Parsek, M., Pearson, J., Iglewski, B., Costerton, J. & Greenberg, E. (1998). The involvement of cell-to-cell signals in the development of bacterial biofilm. Science, 280, p295-297.

[14] Flemming, HC. & Wingender, J. Microbiology (2010), 8, p.623-633

[15] Percival SL, Vuotto C, Donelli G, Lipsky BA. Biofilms and wounds:   an identification algorithm and potential treatment options. Adv Wound Care.   2015;1;4(7):389-397.

[16] Wolcott R. Disrupting the biofilm matrix improves wound healing outcomes. Journal of Wound Care. 2015;24(80):366-371

[17] Mah T., O’Toole G., Mechanisms of biofilm resistance to antimicrobial agents. TRENDS in Microbiology Vol.9 No.1 January 2001 p. 34-39

[18] Snyder RJ, DPM, MSc; Greg Bohn, MD; Jason Hanft, DPM; Larry Harkless, DPM; Paul Kim, DPM; Larry Lavery, DPM; Greg Schultz, PhD; and Randy Wolcott, MD. Wound Bioflm: Current Perspectives and Strategies on Bioflm Disruption and Treatments Supplement to WOUNDS® June 2017

[19] Attinger, C. & Wolcott, R. (2012). Clinically addressing biofilm in chronic wounds. Advances in Wound Care, 1(3), p127 – 132.

[20] Kim, D., Namen, W., Moore, J., Buchanan, M., Hayes, V., Myntti, M. & Hakaim, A. (2018). Clinical assessment of a biofilm-disrupting agent for the management of chronic wounds compared with standard of care: A therapeutic approach. Wounds (ahead of print).

[21] Bjarnsholt T, Kirketerp-Møller K, Jensen P.Ø. et al. Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen. 2008; 16(10): 2–10.

[22] Sen, C., Gordillo, G., Roy, S., Kirsner, R., Lambert, L., Hunt, T., Gottrup, F., Gurtner, G. & Longaker, M. (2009). Human skin wounds: A major and snowballing threat to public health and economy. Wound Repair and Regeneration, 17(6), p763-771

[23] Gupta K, Margques C, Petrova OE, Sauer K. Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two component hybrid sagS. Journal of Bacteriology. 2013;195(21):4975-4987.

[24] Costerton J. W & DeMeo P. Discussion: The Role of Biofilms: Are We Hitting the Right Target? Plast Reconstr Surg. 2011 Jan;127 Suppl 1:36S-37S

[25] Mai-Prochnow, A., Murphy, A., McLean, K., Kong, M. & Ostrikov, K. (2014). Atmospheric pressure plasmas: Infection control and bacterial responses. International Journal of Antimicrobial Agents. Retrieved from, https://ac-els-cdn-com.ipacez.nd.edu.au/S0924857914000508/1-s2.0-S0924857914000508-main.pdf?_tid=4bd13177-9a49-446e-9ebe-c8ffc8ee6884&acdnat=1536502006_7b6a81b413ee46ad59334341c89375db

[26] Bui, L. (2015). Staphylococcus aureus: stress response and its roles in pathogenesis. Manuscript: University of Adelaide. Retrieved from, http://hdl.handle.net/2440/99094.

[27] Wood, T., Knabel, S. & Kwan, B (2013). Bacterial persister cell formation and dormancy. Applied and Environmental Microbiology, 79(23), p7116-7121.

[28] Healogics Wound Science Initiative White Paper 2017

[29] Gould L et al. Chronic Wound Repair and Healing in Older Adults: Current Status and Future Research. J Am Geriatr Soc. 2015 March ; 63(3): 427–438. doi:10.1111/jgs.13332.

[30] Lindholm, C. & Searle, R. (2016). Wound management for the 21st century: Combining effectiveness and efficiency. International Wound Journal, 13 (S2), p5-15.

[31] Phillips, P., Yang, Q., Davis, S., Sampson, E., Azeke, J., Hamad, A. & Schultz, G. (2015). Antimicrobial dressing efficacy against mature pseudomonas aeruginosa biofilm on porcine skin explants. International Wound Journal, 12, p469-483.

[32] Black CE, Costerton JW. (2010). Current concepts regarding the effect of wound microbial ecology and biofilms on wound healing. Surg. Clin. North Am. 90:1147–1160. 10.1016/j.suc.2010.08.009.

[33] Regulski, M., James, G., Avera, E. & Myntti, M. (n.d.). An in-vitro comparison of a novel biofilm disrupting technology and puraply in preventing biofilm growth.

[34] Gardner, S., Frantz, R. & Doebbeling, B. (2001). The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair and Regeneration, 9, p178-186

[35] Scott R., The Direct Medical Costs of Healthcare-Associated Infection in US Hospitals and the Benefits of Prevention. CDC March 2009

[36] Crowe, J et al. Revision Total Hip Arthroplasty: Hospital Cost and Reimbursement Analysis. Clinical Orthopaedics, August 2003.

[37] Crowe, J et al. Revision Total Hip Arthroplasty: Hospital Cost and Reimbursement Analysis. Clinical Orthopaedics, August 2003.

[38] El-Sheikh, Y. et al. Incidence of Capsular Contracture in Silicone Versus Saline Cosmetic Augmentation Mammoplasty: A meta-analysis. Can J Plast Surg, 2008.

[39] Azoury, S. et al. Postoperative Abdominal Wound Infection – Epidemiology, Risk Factors, Identification and Management. Chronic Wound Care Management and Research Journal.

[40] Dorion, H. & Gruber, B. (2018). Pathogenesis of surgical site infection (SSI) – The 3rd Edition: Prevention & Management. Retrieved from, http://laparoscopy.blogs.com/prevention_management_3/2010/07/pathogenesisofsurgicalsiteinfectionssi.html

[41] Wolcott, R. Cutting, K. Dowd, S. Percival, S. Surgical site infections: biofilms, dehiscence and delayed healing. Wounds UK, 2008, Vol 4, No 4. P. 108-113

[42] Connaughton, A., Childs, A., Dylewski, S. & Sabesan, V. (2014). Biofilm disrupting technology for orthopaedic implants: What’s on the horizon? Frontiers in Medicine, 1. Retrieved from, https://www.frontiersin.org/articles/10.3389/fmed.2014.00022/full

[43] Cornell & Hood, (2015). What you should know about biofilm and implants. Podiatry Today, 28(8). Retrieved from, http://www.podiatrytoday.com/whatyoushouldknowaboutbiofilmandimplants.

[44] Arciola, C., Campoccia, D., Ehrlich, G. & Montanaro, L. (2015). Biofilm-based implant infections in orthopaedics. In Donelli, G (Ed.), Biofilm- based Healthcare-associated Infections. Springer International: Basel, Switzerland

[45] McConoughey, S., Howlin, R., Granger, J., Manring, M., Calhoun, J., Shirtlif, M., Kathju, S., and Stoodley, P. (2014). Biofilms in periprosthetic orthopaedic infections. Future Microbiology, 9(8), 987 – 1007.

[46] Parada, S., Dilisio, M. & Kennedy, C. (2014). Management of complications after rotator cuff surgery. Current Reviews in Musculoskeletal Medicine, 8, p40-52.

[47] Ajdic, D., Zoghbi, Y., Gerth, D., Pathaki, Z. & Thaller, S. (2015). The relationship of bacterial biofilms and capsular contracture in breast implants. Aesthetic Surgery Journal, 36(3), p297-309

[48] Constantine RS, Constantine FC, Rohrich RJ. The ever-changing role of biofilms in plastic surgery. Plast Reconstr Surg. 2014 Jun;133(6):865e-872e

[49] Seng, P., Bayle, S., Alliez, ., Ramin, F., Casanova, D. & Stein, A. (2015). The microbial epidemiology of breast implant infections in a regional referral centre for plastic and reconstructive surgery in the south of france. International Journal of Infectious Diseasesm 35, p62-66.

[50] Boyle, K., Rachala, S. & Nodzo, S. (2018). Centres for disease control and prevention 2017 guidelines for prevention of surgical site infections: Review and relevant recommendations. Current Reviews in Musculoskeletal Medicine, 11, p357-369

[51] Bernhardt, M & Myntti, M. (2016). Topical treatment with an agent disruptive to P. acnes biofilm provides positive therapeutic response: Results of a randomized controlled trial. Journal of Drugs in Dermatology, 15(6), p677-683

[52] Omer H, McDowell A, Alexeyev OA. Understanding the role of Propionibacterium acnes in acne vulgaris: The critical importance of skin sampling methodologies. Clin Dermatol. 2017 Mar – Apr;35(2):118-129

[53] Di Domenico, E., Cavallo, I., Toma, L., Bordignon, V., Prignano, G., Gallo, M., Sperdutti, I., Pontone, M., Pimpinelli, F., Sinagra, J., Capitanio, B. & Ensoli, F. (2017). Biofilms producing proprinobacterium acnes attend at both inflamed and noninflamed acen lesions. Journal of Investigative Dermatology, 137(10), pS273.

[54] Dessinioti, C. & Katsambas, A. (2017). Propionibacterium acnes and antimicrobial resistance in acne. Clinics in Dermatology, 35, p163-167

[55] McLellan, C., Frey, M., Thiboutot, D., Layton, A., Chren, M. & Tan, J. (2018). Development of a comprehensive quality-of-life measure for facial and torso acne. Journal of Cutaneous Medicine and Surgery, 22(3), p304-311.

[56] Kosmadaki, M. & Katsambas, A. (2017). Topical treatments for acne. Clinics in Dermatology, 35, p173-178

[57] Thiboutout, D., et al. (2018). Practical management of acne for clinicians: An international consensus from the global alliance to improve outcomes in acne. Journal of the American Academy of Dermatology, 78, S1-23

[58] Vallerand, I., Lewinson, R., Farris, M., Sibley, C., Ramien, M., Bulloch, A. & Patten, S. (2017). Efficacy and adverse events of oral isotretinoin for acne: A systematic review. British Journal of Dermatology, 178, p76-85

[59] Data on file. Center for Biofilm Engineering at Montana State University. Next Science Report TR-10-12-004

[60] Esin L, Antonelli, PJ, Ojano-Dirain C. Effect of Haemophilus influenza Exposure on Staphylococcus aureus Tympanostomy Tube Attachment and Biofilm Formation. JAMA 2014

[61] Data on file

[62] Miller KG, Tran PL, Haley CL, et al. Next science wound gel technology, a novel agent that inhibits biofilm development by gram-positive and gram-negative wound Antimicrob Agents Chemother. 2014;58(6):3060–3072.

[63] Next Science Data on file

[64] Next Science Data on file

[65] Next Science Data on file

[66] Next Science Data on file

[67] He, E., Attaluri, P., Bounds, K., Colmer-Hamood, J., Dissanaike, S., Griswold, J., Myntti, M. & Hamood, A. 2015. Surgical irrigation fluid containing next science, a novel antimicrobial agent inhibits staphylococcus aureus infection of surgical wounds. Next Science: Jacksonville, FL.

[68] Porcine Dermal Full-Thickness Wound Wash Study. WuXi AppTec report 32255.

[69] Data on file. Center for Biofilm Engineering at Montana State University. Next Science report TR-02-14-025.

[70] Data on file. Center for Biofilm Engineering at Montana State University. Next Science report TR-02-14-010.

[71] Malone M, Goeres DM, Gosbell I, Vickery K, Jensen S, Stoodley P. Approaches to biofilm-associated infections: the need for standardized biofilm methods for medically relevant clinical applications. Expert Rev Anti Infect Ther. 2016; in press.

[72] Leid JG, Willson CJ, Shirtliff ME, et al. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-mediated macrophage killing. J Immunol. 2005;175(11):7512-7518.

[73] Gilbert P, Maira-Litran T, McBain AJ, et al. The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol. 2002;46:202–256.

[74] Bispo PJ, Haas W, Gilmore MS. Biofilms in infections of the eye. Pathogens. 2015;4(1):111-36.

[75] Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7(2):277–281.

[76] Coenye T, Honraet K, Rossel B, Nelis HJ. Biofilms in Skin Infections: Propionibacterium acnes and Acne Vulgaris. Infectious Disorders – Drug Targets. 2008;8(3):156-159.

[77] Hall-Stoodley L, Hu FZ, Gieseke A, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA. 2006;296(2):202–211.

[78] Tajudeen BA, Schwartz JS, Palmer JN. Understanding biofilms in chronic sinusitis. Curr Allergy Asthma Rep. 2016 Feb;16(2):10.

[79] Marsh PD, Bradshaw DJ. Dental plaque as a biofilm. J Ind Microbiol. 1995;15(3):169–

[80] Moreau-Marquis S, Stanton BA, O’Toole GA. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. A short review. Pulm Pharmacol Ther. 2008;21(4):595-9.

[81] Delcaru C, Alexandru I, Podgoreanu P, et al. Microbial Biofilms in Urinary Tract Infections and Prostatitis: Etiology, Pathogenicity, and Combating strategies. Young LS, ed. Pathogens. 2016;5(4):65.

[82] Machado D, Castro J, Palmeira-de-Oliveira A, Martinez-de-Oliveira J, Cerca N. Bacterial Vaginosis Biofilms: Challenges to Current Therapies and Emerging Solutions. Front Microbiol. 2015;6:1528.

[83] Wolcott R, Cutting KF, Dowd S. Surgical site infections: biofilms, dehiscence and delayed healing. Wounds UK. 2008;4(4):108-3.

[84] Elgharably H, Mann E, Awad H, et al. First evidence of sternal wound biofilm following cardiac surgery. PloS one. 2013;8(8):e70360.

[85] Edmiston CE, McBain AJ, Kiernan M, Leaper DJ. A narrative review of microbial biofilm in postoperative surgical site infections: clinical presentation and treatment. Journal of wound care. 2016;25(12):693-702.

[86] Wolcott RD, Rhoads DD, Dowd SE. Biofilms and chronic wound inflammation. Journal of Wound Care. 2008;17(9):333-341.

[87] James GA, Swogger E, Wolcott RD, Pulcini ED, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16(1):37-44.